当今一些最常见的AI用例
人工智能可能的AI用例和应用是无限的。当今一些最常见的AI用例包括:
推荐引擎——无论是购买一件新毛衣、找一部电影看、浏览社交媒体还是试图寻找真爱,我们都可能会遇到一个基于人工智能的算法,其会给出建议。大多数推荐引擎使用机器学习模型将用户的特征和历史行为与周围的人进行比较。即使用户自己不知道这些偏好,这些模型也能很好地识别偏好。
自然语言处理——自然语言处理(NLP)是一个广泛的人工智能类别,包括语音到文本、文本到语音、关键字识别、信息提取、翻译和语言生成。其允许人类和计算机通过普通的人类语言(音频或打字)进行交互,而不是通过编程语言。由于许多NLP工具都包含了机器学习功能,因此它们往往会随着时间的推移而改进。
情感分析——人工智能不仅可以理解人类语言,还可以识别支撑人类对话的情感。例如,人工智能可以分析数千个技术支持对话或社交媒体互动,并识别出哪些客户正在经历强烈的积极或消极情绪。这种类型的分析可以让客户支持团队专注于那些可能有叛变风险的客户和/或可能被鼓励成为品牌倡导者的极度热情的支持者。
语音助手——很多人每天都与Siri、Alexa、Cortana或Google互动。虽然我们经常认为这些助手是理所当然的,但其融合了先进的人工智能技术,包括自然语言处理和机器学习。
欺诈预防——金融服务公司和零售商经常使用高度先进的机器学习技术来识别欺诈交易。其在金融数据中寻找模式,当交易看起来异常或符合已知的欺诈模式时,就会发出警报,以阻止或减轻犯罪活动。
图像识别——很多人都使用基于人工智能的面部识别来解锁手机。这种人工智能还支持自动驾驶汽车,并允许自动处理许多与健康有关的扫描和测试。
预测性维护——许多行业,如制造、石油和天然气、运输和能源严重依赖机械。当机械停机时,成本可能会非常高。目前,企业正在结合使用目标识别和机器学习技术,来提前识别设备可能发生故障的时间,以便在故障最小化的时间安排维修。
预测分析和禁止分析——预测算法可以分析任何类型的业务数据,并将其用作预测未来可能发生事件的基础。规范性分析还处于起步阶段,其更进一步,不仅可以做出预测,还可以提供建议,告知组织应该为可能发生的未来事件做好准备。
自动驾驶汽车——当今生产的大多数汽车都具有一些自动驾驶功能,如停车辅助、车道居中和自适应巡航。虽然完全自动驾驶汽车仍然很昂贵,且相对稀少,但已经在路上,并且驱动其的人工智能技术正在变得越来越好,越来越便宜。
机器人技术——工业机器人是人工智能最早的应用之一,其仍然是人工智能市场的重要组成部分。消费型机器人,如机器人吸尘器、调酒师和割草机,正变得越来越普遍。
当然,这些只是人工智能的一些广为人知的用例。科技正以如此多的方式渗透到我们的日常生活中,以至于我们常常没有完全意识到它们。
人工智能的未来
那么,人工智能的未来在哪里?显然,其正在重塑消费者和商业市场。
推动人工智能的技术继续以稳定的速度发展。量子计算等未来的进步可能最终会带来重大的创新,但在近期内,这项技术本身似乎很可能会沿着一条可预测的不断改进的道路继续前进。
目前尚不清楚的是人类将如何适应人工智能。这个问题对未来几十年的人类生活产生了重大影响。
许多早期的AI实现都遇到了重大挑战。在某些情况下,用于训练模型的数据会让偏差感染AI系统,导致其无法使用。
在其他许多情况下,企业在部署AI后并没有看到希望的财务结果。技术可能已经成熟,但围绕其的业务流程却还不成熟。
Gartner高级研究总监AlysWoodward表示:“人工智能软件市场正在加速发展,但其长期发展轨迹将取决于企业能否提高其人工智能成熟度。”
Woodware补充道:“成功的AI业务成果将取决于对用例的谨慎选择。提供重大业务价值的用例,同时可以通过扩展来降低风险,这对于展示AI投资对业务利益相关者的影响至关重要。”
组织正在转向使用AIOps等方法来帮助更好地管理AI部署。他们越来越多地寻找以人为中心的人工智能,利用人工智能来增强而不是取代人类工人。
在非常现实的意义上,人工智能的未来可能更多地是关于人,而不是机器。
来源:千家网